
EXAMPLE 4 (part I): pure exchange

The simple two good, two agent model of exchange equilibrium (no production process, only exchange). The world endowments for goods x and y are both equal to 1.

Six parameters (declared as scalars) are used to parameterize the model. We introduce new utility function CES:

SREPORT section requests the solution system to display values for inputs, outputs, final demands or welfare indices at the equilibrium. Example: XAD it is demand by agent A on good X YAD it is demand by agent A on good Y where XAD*PX+YAD*PY=A and XBD*PX+YBD*PY=B

* Request the old version of PATH option mcp=pathold;

*The world endowments for good X and Y are both equal to one.

SCALAR	XA	AGENT A ENDOWMENT OF X ($0 < XA < 1$)	/0.2/
	YA	AGENT A ENDOWMENT OF Y ($0 < YA < 1$)	/0.8/
	THETA_A	AGENT A DEMAND SHARE PERAMETER FOR X	/0.5/
	THETA_B	AGENT B DEMAND SHARE PARAMETER FOR X	/0.8/
	SIGMA_A	AGENT A ELASTICITY PARAMETER	/2.0/
	SIGMA_B	AGENT B ELASTICITY PARAMETER	/0.5/;

\$ONTEXT

\$MODEL: EXCHANGE

\$COMMODITIES:

PX	!	EXCHANGE	PRICE	OF	GOOD	Х
PY	!	EXCHANGE	PRICE	OF	GOOD	Y

\$CONSUMERS:

A B

!	CONSUMER	А
!	CONSUMER	В

* This model specification uses the default value for reference prices in the * demand function blocks. When "P:value" is not specified, "P:1" is assumed.

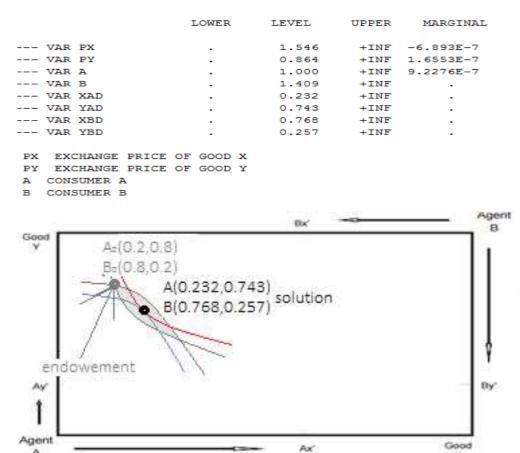
\$DEMAND:A	s:SIGMA_A
E:PX	Q:XA
E:PY	Q: <mark>YA</mark>
D:PX	Q:THETA_A

D:PY Q:(1-THETA_A)

- * Any numeric input field in an MPSGE model may be "computed"
- *(algebraic expression may be enclosed within parentheses and legitimate GAMS code)

\$DEMAND:B	s:SIGMA_B
E:PX	Q:(1-XA)
E: PY	Q: <mark>(1-YA</mark>)
D:PX	Q:THETA_B
D:PY	Q:(1-THETA_B)

- * The \$REPORT section of the input file requests the solution system to return
- * values for inputs, outputs, final demands or welfare indices at the equilibrium.
- * Only those items which are requested will be written to the solution file.
- * Each record in the report block begins with a V: (variable name) field.


\$REPORT:			
	V:XAD	D:PX	DEMAND:A
	V:YAD	D:PY	DEMAND: A
	V:XBD	D:PX	DEMAND:B
	V:YBD	D:PY	DEMAND: B

SOFFTEXT

A

\$SYSINCLUDE mpsgeset EXCHANGE

\$INCLUDE EXCHANGE.GEN SOLVE EXCHANGE USING MCP;

Conclusion: B has limited elasticity of substitution and comparative advantage in X. A can easy substitute X with Y since he has elasticity of substitution above 1, but he prefer equal share since THETA_A=0.5. Thus XA should increase and YA should decrease. B is satisfied with the initial allocation because THETA_B=0.8, i.e. XB=0.8. If A wants to buy X, he has to offer a high price in order to give the incentive to B to sell this product. At the same time A has to sell Y, but B does not want this product, i.e. A should offer so low price that B will have an incentive to buy Y. Thus PX>PY. Finally income for A=PX*XAD+PY*YAD becomes lower than B=PX*XBD+PY*YBD.

×

EXAMPLE 4 (part II): second welfare theorem

Absolute levels of income and price are not appropriate for general equilibrium modeling. A CGE model determines only **relative** prices.

SCALAR PRATIO EQUILIBRIUM PRICE X IN TERMS OF Y IRATIO EQUILIBRIUM RATIO OF CONSUMER A INCOME TO CONSUMER B INCOME; PRATIO = PX.L / PY.L; IRATIO = A.L / B.L;

DISPLAY IRATIO, PRATIO;

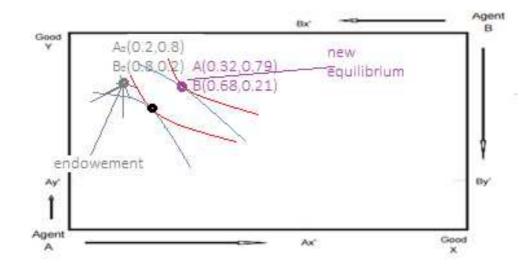
We have to compute an alternative efficient equilibrium where income levels for A and B are equal, to demonstrate that when incomes are both fixed, the equilibrium remains efficient but the connection between market prices and endowment income is eliminated. This will replicate the **Second Welfare Theorem** - any Pareto-efficient allocation can be supported as a price quasi-equilibrium with transfers (under the assumption of convexity for preferences and production set)

A.FX = 1; B.FX = 1;

\$INCLUDE EXCHANGE.GEN SOLVE EXCHANGE USING MCP;

TRANSFER

SCALAR


IMPLIED TRANSFER FROM A TO B AS A PERCENTAGE OF INCOME;

TRANSFER=100*(A.L- (PX.L*XA +PY.L*YA));
PRATIO = PX.L/PY.L;
IRATIO = A.L/B.L;

DISPLAY TRANSFER, PRATIO, IRATIO;

	LOWER	LEVEL	UPPER	MARGINAL
VAR PX		1.223	+INF	
VAR PY		0.777	+INF	
VAR A	1.000	1.000	1.000	0.134
VAR B	1.000	1.000	1.000	-0.134
VAR XAD		0.318	+INF	
VAR YAD		0.786	+INF	
VAR XBD		0.682	+INF	
VAR YBD		0.214	+INF	
PX EXCHANGE PRICE	OF GOOD X			
PY EXCHANGE PRICE	OF GOOD Y			
A CONSUMER A				
B CONSUMER B				
FARAMETER TRANSF	ER	=	13.351	IMPLIED TRANSFER FROM
				A TO B AS A PERCENTAG
				E OF INCOME
PARAMETER PRATIO		=	1.572	EQUILIBRIUM PRICE X I
				N TERMS OF Y
PARAMETER IRATIO		=	1.000	EQUILIBRIUM RATIO OF
				CONSUMER A INCOME TO
				CONSUMER B INCOME
				CONSCREX B INCOME

Details for IRATIO=A/B: A=PX*XAD+PY*YAD=1,223*0,318+0,777*0,786=1 B= PX*XBD +PY*YBD = 1,223*0,682+0,777*0,214=1

PX and PY becomes lower, because income is fixed and it depends on prices, i.e. A=PX*XAD+PY*YAD=B=PX*XBD+PY*YBD.

It gives PX/PY=(YAD-YBD)/(XBD-XAD)=1.572, while previously we had PX/PY=1.79.

Thus A is not able to pay as much as before for X because it will imply higher income for B, but the income is fixed. The new allocation is Pareto optimal because we cannot make B better without making worse A.

Conclusion: By fixing agents income, we demonstrate the Second Welfare Theorem, because the relationship between prices and income is eliminated. No Walras equilibrium is possible without the transfer of 13.351% A income to B, because B has worse situation than in the previous allocation. The transfer implies the shift of endowment in order to guarantee constant efficiency. If the transfer is not possible, the result can be interpreted as a Pareto optimum, but not as a Walras equilibrium.

Alternatively we can fix A and B to another original value:

VAR A		1.000 +INF		
S VAR B	•	1.409 +INF	,	
A.FX = 1.409;				
B.FX = 1.409;				
The new results:				
	LOWER	LEVEL	UPPER	MARGINAL
VAR PX		1.7225	+INF	
VAR PY		1.0955	+INF	
VAR A	1.4090	1.4090	1.4090	0.1881
VAR B	1.4090	1.4090	1.4090	-0.1881
VAR XAD		0.3180	+INF	
VAR YAD		0.7862	+INF	
VAR XBD		0.6820	+INF	
VAR YE		0.2138	+INF	

Details for IRATIO=A/B=1: A=PX*XAD+PY*YAD=1,7225*0,318+1,0955*0,7862=1.409 B=PX*XBD+PY*YBD = 1,7225*0,682+1,0955*0,214=1.409

Conclusion: Increasing income by 41% (from 1.000 to 1.409) \Rightarrow nominal prices increases by 41% (from 1.223 to 1.723 for PX and from 0.777 to 1.096 for PY), but PRATIO=const and IRATIO=const \Rightarrow nominal value of transfer increases, but not the real one. The results in situation two (A=B=1.409) due to the money illusion

may seem better than in the first situation (A=B=1). In reality, however, as the income for A and B increase, the price increases in the same speed, making both situations equally beneficial for both entities. \Rightarrow Utility depends on XA and YA (or on XB and YB), but not on nominal values of prices and income.

People have a tendency to view their wealth and income in nominal terms rather than in real (i.e. to recognize their real value, adjusted for inflation) terms. Economic theory calls it **money illusion**. In other words, the face value (nominal value) of money is mistaken for its purchasing power (real value). Suggesting yourself in economic decisions with nominal monetary categories (money illusion) may generate serious economic disturbances. For example: a 2% increase in nominal wages during a 4% inflation period is perceived differently (better) by employees than a 2% reduction in nominal wages in a 2% deflation period (worse), although the latter is more economically advantageous.

Exercise 4A: autarchy

*FOR AUTARKIA FOR CONSUMER A A.LO = 0;A.UP = +INF; B.LO = 0;B.UP = +INF; \$ONTEXT \$MODEL:AUTAR_A \$COMMODITIES: PX ! AUTAR_A PRICE OF GOOD X PY ! AUTAR_A PRICE OF GOOD Y \$CONSUMERS: A ! CONSUMER A s:SIGMA_A \$DEMAND:A E:PX O:XA E:PY Q:YA D:PX Q:THETA_A D:PY Q:(1-THETA_A) SOFFTEXT \$SYSINCLUDE mpsgeset AUTAR_A \$INCLUDE AUTAR_A.GEN SOLVE AUTAR_A USING MCP; PARAMETER PRICER PRICE RATIO OF THE AUTARCHY MODELS; PRICER("AUT_A","PRATIO") = PX.L /PY.L *FOR AUTARKIA FOR CONSUMER B \$ONTEXT

SMODEL: AUTAR_B								
\$COMMODITIES:								
	PX	1 1	AUTAR	_B	PRICE	OF	GOOD	Х
	PY	1 1	AUTAR	_B	PRICE	OF	GOOD	Y
\$CONSUMERS:								
	E	3 !	CONSU	MEI	RВ			
\$DEMAND:B	s:SIG	MA_	_B					
E:PX	Q:(1-	XA)					
E:PY	Q:(1-	YA)					
D:PX	Q:THE	TA_	_B					
D:PY	Q:(1-	TH	ETA_B)					
\$OFFTEXT								
\$SYSINCLUDE mps	geset	AU.	ΓAR_B					
\$INCLUDE AUTAR_	B.GEN							
SOLVE AUTAR_B U	SING M	ICP .	;					

PARAMETER PRICER PRICE RATIO OF THE AUTARCHY MODELS; PRICER("AUT_B","PRATIO") = PX.L /PY.L

solution AUTARKIA A

	LOWER	LEVEL	UPPER	MARGINAI			LOWER	LEVEL	UPPER	MARGINAL
VAR PX		1.667	+INF		V2			1.000	+INF	
VAR PY		0.833	+INF		V2	AR PY	•	1.000	+INF	•
VAR A		1.000	+INF		VI	AR B	•	1.000	+INF	•
VAR XAD		0.200	+INF		V2	AR XAD			+INF	EPS
VAR YAD		0.800	+INF		V2	AR YAD			+INF	EPS
VAR XBD			+INF	EPS	V2	AR XBD		0.800	+INF	
VAR YBD			+INF	EPS	VI	AR YBD		0.200	+INF	•
PX AUTAR A PRICE	OF GOOD X				PX 2	AUTAR_B	PRICE OF GOOD X			
PY AUTAR A PRICE	OF GOOD Y				PY 1	AUTAR_B	PRICE OF GOOD Y			
A CONSUMER A					B CC	ONSUMER	В			
PARAMETER PRATIO	=		ILIBRIUM PR ERMS OF Y	ICE X I	PARAMETER PRATIO		= 1.000	EQUILIBRIU N TERMS OF	M PRICE X I	

AUTARKIA B

Conclusion: (i) Autarchy for B implies PX=PY, because this its initial allocation, i.e. agent B is not suffering from no trade. Autarchy for A implies PX=2PY, i.e. PX>PY, because the agent A demands for more X (THETA_A=0.5) than he has (XA=0.2). No trade is possible (i.e. XA=XAD), but prices reacts for the wishes of consumer. (ii) Fixing A and B at 1 (Second Welfare Theorem) will not change the results.

Exercise 4B:

(b) Determine parameter values in the original model where the endowment point is the equilibrium point(hint: change preferences of A to be the same as his endowment)

THETA_A=0.2;

А

0.2

T	HETA_A=0.2;								
SOLVE EXCH TRANSFER=1 PRATIO = H IRATIO = A	.UP=+INF; EXCHANGE.GEN HANGE USING M 100*(A.L- (PX PX.L/PY.L;	.L*XA +P);					
	LOWER	LEVEL	UPPER	MARGINAL	PARAMETER TR	ANSFER	=	0.000	TRANSFER GOOD X FROM
VAR PX VAR PY VAR A VAR B		1.000 1.000 1.000 1.000	+INF +INF +INF +INF		PARAMETER PR	ATIO	-	1.000	CONSUMER A TO B EQUILIBRIUM PRICE X I N TERMS OF Y
PX EXCHANGE PY EXCHANGE A CONSUMER 3		1.000		·	PARAMETER IR	ATIO	-	1.000	EQUILIBRIUM RATIO OF CONSUMER A INCOME TO CONSUMER B INCOME
B CONSUMER I		.1 .	• 1	1 1					
Edgewo	orth box for 0.8	the ori	ginal r	nodel	THETA_A	A=0.5			D
									В
0.8									
0.743									
					•	Initial al	location		0.2 0.23
Y					•	Optimu	m		0.23
						Preferen	ces of A		
						Preferen	ces of B		
AL	0.2 0.2	23		0.5		·	Х		
Edgewo	orth box for	Exercis	se 4B		THETA	A-02			
	0.8				IIILIA <u></u>	_A=02			В
0.8									0.2
Y									

Х

Conclusion: (i) There is no transfer from A to B, because initial allocation is represents final preferences. In the original case, A wants more X and less Y than possess \Rightarrow Px \uparrow and Py \downarrow (ii) Exercises 4a (autarchy) and 4B have similar results, i.e. demand=endowment. (iii) Fixing A and B at 1 (Second Welfare Theorem) will not change the results.

Exercise 4C:

				E	xercise	4C:						
* <mark>Set up a</mark> values.	series of compu	tations from w	hich you can	sketch the effi	ciency locu	ıs. Draw	the Edgeworth	box diagr	am which is	consistent	with these	
	THETA_A=0	<mark>.5</mark> ;										
PRATIO IRATIO	ER=100*(A.L = PX.L/PY. = A.L/B.L; Y TRANSFER,	L;		\));								
*	-	g differen the demand		of endowm	ents of	X and	extract th	ne solu	tion			
SET	S	С	SCEN	JARIOS /SC	1*SC7/;							
PARAME		AVALUE(SC) EMAND(SC, <mark>*</mark>	/SC1 SC5	JE SHARE O 0, SC2 0.7, SC6 ND BY SCE	0.1, SC 0.9, SC	23 0.3	SC4 0.5,					
LOOP (*		XA value LUE(SC);	for the c	current sc	enario:							
	DE EXCHANGE EXCHANGE US											
DEMAND DEMAND	Extract t (SC, "XADEM (SC, "YADEM (SC, "XBDEM (SC, "YBDEM	") = YAD.I ") = XBD.I	;; ;; ;;	of the dem	ands:							
DISPI	AY XAVALUE,	DEMAND;										
SC2 0.	541 PARAMETH	CR XAVALUE N					7 1.000					
	541 PARAMETH	ER DEMAND DE	EMAND BY SCE	NARIO				A.FX B.FX				
	XADEM	YADEM	XBDEM	YBDEM					XADEM	YADEM	XBDEM	YBDEM
SC1 SC2 SC3 SC4	0.068 0.151 0.311 0.466	0.598 0.690 0.783 0.845	0.932 0.849 0.689 0.534	0.402 0.310 0.217 0.155				SC1 SC2 SC3 SC4	0.318 0.318 0.318 0.318		0.682 0.682 0.682 0.682	0.214 0.214 0.214 0.214
SC5 SC6 SC7	0.400 0.620 0.773 0.849	0.845 0.896 0.940 0.961	0.380 0.227 0.151	0.135 0.104 0.060 0.039				SC5 SC6 SC7	0.318 0.318 0.318	0.786 0.786 0.786	0.682 0.682 0.682	0.214 0.214 0.214
		T Y Y		Agent 49;0.961) 51;0.39)	Y		A.LO=0 an B.LO=0 an				FX=1; FX=1;	— B
Agent A			Ax'	Good X	A				Х]

Conclusion: The command LOOP allows to make a series of similar computations for different scenarios.